232. The Dissociation Constants of Organic Acids. Part XVIII.* Some Cyclic 1:1-Diacetic Acids.

By William L. German and Arthur I. Vogel.

Of the numerous methods that have been employed for the comparative study of the influence of substituents upon chemical properties with a view to the determination of qualitative values for valency-deflexion angles and also for throwing light upon the structure of ring systems, the two that have been applied to the largest number of substituents are those due to Thorpe and Ingold and their co-workers (J., 1915 et seq.) and to Vogel (J., 1928, 2014). The former depends inter alia upon (i) the stability of the trans-spiro-acid (I) towards hydrochloric acid of various concentrations at different temperatures, and (ii) the tautomeric change between keto-acids of the type (II) and their hyclroxy-ring isomerides

(IV.) $>\mathrm{C}=\mathrm{C}<\mathrm{CO}_{2} \mathrm{Et}$

$$
\begin{align*}
& >\mathrm{C} \cdot \mathrm{CH}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et} \tag{V.}\\
& >\mathrm{C} \cdot \mathrm{CH}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}
\end{align*}
$$

(III). The latter method utilises the yield of the bimolecular compound (V), obtained by the reduction of the unsaturated cyano-ester (IV) with aluminium amalgam in moist ethereal solution, as a basis of comparison. The yields of (V) (compare J., 1931, 1796) for the substituents cyclopentane and 3-methylcyclopentane are 13% and 13% respectively, and for cyclohexane, and 2 -, $\dagger 3$-, and 4 -methylcyclohexane the corresponding yields are 6 , $2, \dagger 6$, and 4% respectively. These figures would suggest that there is no essential difference in the configurations of the cyclopentane and 3-methylcyclopentane rings or between the unsubstituted cyclohexane and the 3- and 4-methylcyclohexane rings and possibly also the 2-methylcyclohexane ring. Desai (J., 1932, 1065), employing the Thorpe-Ingold method, has found a remarkable similarity between the behaviour of the cyclopentane and 3-

[^0]methylcyclopentane compounds, but serious differences were encountered between the cyclohexane and the 3- and 4-methylcyclohexane compounds (J., 1932, 1053). Ives, Linstead, and Riley (J., 1932, 1093) suggest, as a result of their determinations of the classical primary dissociation constants of cyclopentane-, cyclohexane-, and 3- and 4-methylcyclohexane-1:1-diacetic acids, that the chemical tests employed by Desai are here "misleading if applied as a test for valency deflexion." The three authors state (loc. cit.) that their determinations of $K_{1 \text { class, }}$ for these acids by conductivity " involve certain difficulties of calculation." A method for overcoming all these difficulties and which leads to values of the primary thermodynamic dissociation constants is described in Part XI of this series (J., 1935, 22). In view of the importance of the subject in connexion with the general question of the structure of simple and substituted cyclopentane and cyclohexane rings, measurements have been made of the true primary and secondary ionisation constants of the substituted $\mathbf{1}: \mathbf{1}$-diacetic acids by potentiometric titration, and the distances between the carboxyl groups have been calculated by the methods of Bjerrum (Z. physikal. Chem., 1923, 106, 219) (B.) and of Gane and Ingold (J., 1931, 2153, 2160, 2180) (G. \& I.). Our results, together with those of Gane and Ingold (J., 1931, 2158) and of Ives, Linstead, and Riley (I. L. \& R.), are collected in the following table.

1-Diacetic acid	$K_{1}{ }^{\text {therm }}$.	K_{2} therm.	r (B.)	r (G. \& I. ${ }^{\text {c }}$)	$K_{1}(\mu=0)$	$K_{2}{ }^{2}(\mu=0)$	I. L. \& R.
cycloPentane	1.60	17.0	1.30	$3 \cdot 38$	1.68	$25 \cdot 8$	1.76
3-Methylcyclopentane...	1.61	18.2	$1 \cdot 32$	$3 \cdot 40$			
cycloHexane *	$3 \cdot 27$	$8 \cdot 26$	$1 \cdot 03$	$3 \cdot 12$	$3 \cdot 34$	$9 \cdot 9$	$3 \cdot 23$
2-Methylcyclohexane ...	$2 \cdot 96$	13.00	$1 \cdot 16$	$3 \cdot 25$	-	-	
3-Methylcyclohexane ..	$3 \cdot 23$	$8 \cdot 34$	$1 \cdot 04$	$3 \cdot 15$	-	-	$3 \cdot 25$
4-Methylcyclohexane ...	$3 \cdot 23$	$8 \cdot 02$	1.03	$3 \cdot 13$	-	-	$3 \cdot 21$
Jones and Soper	(J., 193	35) gi	1 therın	$=3.25 \times$	0^{-4} and K	rm. $=10$	$\times 10^{-8}$.

The potentiometric titration curves are shown in Figs. 1 and 2; the abscissæ have been displaced for the different acids in order to avoid overlapping and to emphasise the similar-

Fig. 1.

I. cycloPentane-1:1-diacetic acid.
II. 3-Methylcyclopentane-1 : 1-diacetic acid.
ities in the curves. Our results support the view that the substituted acids closely resemble the parent substances, and provide definite evidence for the current accepted conception of the strainless structure of the cyclopentane and cyclohexane rings.

Experimental.

Preparation of Materials.-Full details of the preparation of all the acids, except 2-methyl-cyclohexane-1 : 1-diacetic acid, have been given by Vogel (J., 1934, 1760); only the methods of further purification are now indicated. All samples were dried in a vacuum desiccator over calcium chloride for several days before use.
cycloPentane-1 : 1-diacetic acid. Specimen I. A sample which had been recrystallised from dilute alcohol was crystallised from redistilled dioxan (b. p. 101-103.5)-light petroleum
(b. p. $40-60^{\circ}$, AnalaR, sodium-dried), the separated solid well washed with sodium-dried light petroleum (b. p. $40-60^{\circ}$) to remove adhering dioxan, and then dried in a vacuum; m. p. 179°.

Fig. 2.

III. cycloHexane-1: 1-diacetic acid.
V. 3-Methylcyclohexane-1 : 1-diacetic acid.
IV. 2-Methylcyclohexane-1:1-diacetic acid.
VI. 4-Methylcyclohexane-1:1-diacetic acid.

Specimen II. This was purified through the anhydride and recrystallised from hot water; m. p. 178°.
cycloHexane-1 : 1-diacetic acid. Recrystallised from 80% alcohol; m. p. 181°.
2-Methylcyclohexane-1:1-diacetic acid. $400 \mathrm{C} . c$. of absolute alcohol were saturated with dry ammonia at -5° during 5 hours and added to a mixture of 112 g . (1 mol .) of pure 2 -methylcyclohexanone, b. p. $164^{\circ} / 770 \mathrm{~mm}$., and 226 g . (2 mols .) of ethyl cyanoacetate contained in a large (1500 c.c.) wide-mouthed glass-stoppered bottle. The whole was kept at 0° for 4 days and then at room temperature for 5 days. A small amount of solid (cyanoacetamide) separated; 2 litres of water were added (the separated solid dissolved), the whole extracted three times with ether, the aqueous layer acidified with hydrochloric acid (to methyl-red), and a further 200 c.c. of concentrated hydrochloric acid added. The separated dicyano-imide was collected after 24 hours and dried at $100^{\circ}(29 \cdot 3 \mathrm{~g}$. $)$. The crude substance had m. p. 243°, and m. p. 245° after recrystallisation from 50% alcohol (Kon and Thorpe, J., 1919, 115, 694, give m. p. 245°). 58.4 G . of the finely-powdered dicyano-imide were dissolved in 120 c.c. of cold concentrated sulphuric acid, left for 24 hours, 112 c.c. of water cautiously added, and the whole boiled under reflux for 17 hours. The crude acid which had separated was filtered off after 48 hours, extracted with a saturated solution of sodium bicarbonate, the extract filtered, acidified with concentrated hydrochloric acid, and the solid collected after 24 hours (yield : 46.4 g . after drying at 100°). The acid was recrystallised successively from ether-benzene ($2: 1$) and 50% alcohol; it had $\mathrm{m} . \mathrm{p} .152^{\circ}$ (Kon and Thorpe, loc. cit., give m. p. 148°).

3-Methylcyclopentane-1:1-diacetic acid. This was půrified through the anhydride, and recrystallised from chloroform (AnalaR)-light petroleum (b. p. 40-60 ${ }^{\circ}$, AnalaR, sodium-dried); m. p. 134-135 .

3-Methylcyclohexane-1:1-diacetic acid. Recrystallised from 50\% alcohol; m. p. 142°.
4-Methylcyclohexane-1:1-diacetic acid. Recrystallised from 50% alcohol; m.p. 160°.
Geneval Technique and Apparatus.-This has already been described (J., 1935, 912, 1628 ; J. Amer. Chem. Soc., 1936, 58, 1546; Phil. Mag., 1936, 22, 796). All measurements were carried out at $25^{\circ} \pm 0.01^{\circ}$ with the quinhydrone electrode. Standardisation was effected before and after each titration against at least two independent $0 \cdot 1 N$-calomel cells, and also against $0.05 M$-potassium hydrogen phthalate (the A.R. solid was specially purified for this purpose) and Walpole's standard acetate buffers (18°), appropriate allowance being made for the difference in temperature.

The results were computed as described for maleic acid (Phil. Mag., loc. cit.), the large difference in magnitude between K_{1} and K_{2} permitting the independent evaluation of K_{1} class. and K_{2} class. All the results are collected in the following tables; the classical values are included to permit comparison with the data in the literature.
 cycloPentane-1 : 1-diacetic Acid $(\mathrm{M}=186 \cdot 10)$.
Potentiometric titration of 100.00 c.c. of 0.005 M -acid against 0.009950 M -sodium hydroxide solution.

0.00	$3 \cdot 085$	-	-	-	$50 \cdot 00$	$5 \cdot 281$	-	-	-
$10 \cdot 00$	$3 \cdot 382$	1.70	$1 \cdot 32$	$1 \cdot 63$	$60 \cdot 00$	$6 \cdot 083$	-	-	-
$15 \cdot 00$	$3 \cdot 531$	$1 \cdot 70$	1.59	1.62	$65 \cdot 00$	$6 \cdot 296$	$2 \cdot 10$	$4 \cdot 81$	$1 \cdot 65$
$20 \cdot 00$	$3 \cdot 680$	$1 \cdot 69$	$1 \cdot 87$	$1 \cdot 61$	$70 \cdot 00$	$6 \cdot 479$	$2 \cdot 15$	$5 \cdot 25$	1.67
$25 \cdot 00$	$3 \cdot 832$	$1 \cdot 69$	$2 \cdot 14$	$1 \cdot 60$	75.00	$6 \cdot 638$	$2 \cdot 24$	$5 \cdot 67$	1.72
$30 \cdot 00$	$4 \cdot 000$	$1 \cdot 65$	$2 \cdot 40$	1.56	$80 \cdot 00$	$6 \cdot 811$	$2 \cdot 25$	$6 \cdot 08$	1.71
$35 \cdot 00$	$4 \cdot 142$	$1 \cdot 65$	$2 \cdot 65$	$1 \cdot 56$	$85 \cdot 00$	$6 \cdot 990$	$2 \cdot 29$	$6 \cdot 42$	1.73
$40 \cdot 00$	$4 \cdot 401$	-	-	-	$90 \cdot 00$	7-162	$2 \cdot 60$	$6 \cdot 78$	(1-95)
				$1 \cdot 60$					1.70

3-Methylcyclopentane-1:1-diacetic Acid $(\mathrm{M}=\mathbf{2 0 0} \cdot \mathbf{2 4})$.
Potentiometric titration of $100 \cdot 00$ c.c. of 0.005 M -acid against 0.009950 M -sodium hydroxide solution.

$0 \cdot 00$	3.078	-	-	-	50.00	$5 \cdot 240$	-	-	-
$10 \cdot 00$	$3 \cdot 382$	1.70	$1 \cdot 32$	$1 \cdot 63$	60.00	$6 \cdot 068$	-		
15.00	$3 \cdot 531$	1.70	$1 \cdot 59$	$1 \cdot 62$	65.00	6.266	$2 \cdot 25$	$4 \cdot 81$	$1 \cdot 77$
$20 \cdot 00$	3.680	1.70	$1 \cdot 87$	$1 \cdot 61$	$70 \cdot 00$	$6 \cdot 447$	$2 \cdot 31$	$5 \cdot 25$	1.80
$25 \cdot 00$	$3 \cdot 833$	$1 \cdot 69$	$2 \cdot 14$	$1 \cdot 60$	75.00	$6 \cdot 607$	$2 \cdot 40$	$5 \cdot 67$	$1 \cdot 84$
$30 \cdot 00$	$4 \cdot 000$	1.65	$2 \cdot 40$	1.56	80.00	6.780	$2 \cdot 41$	$6 \cdot 08$	1.84
$35 \cdot 00$	$4 \cdot 160$	1.74	$2 \cdot 65$	1-64	85.00	6.964	$2 \cdot 44$	$6 \cdot 42$	1.84
$40 \cdot 00$	$4 \cdot 451$				90.00	7-156	$2 \cdot 65$	6.78	(1.99)

cycloHexane-1 : 1-diacetic Acid ($\mathrm{M}=\mathbf{2 0 0} \cdot \mathbf{2 4}$).
Potentiometric titration of $100 \cdot 00$ c.c. of $0 \cdot 005 \mathrm{M}$-acid against $0 \cdot 009919 \mathrm{M}$-sodium hydroxide solution.

$0 \cdot 00$	$2 \cdot 914$	-	-	-	$50 \cdot 00$	5.377	--	-	--
$10 \cdot 00$	3.178	$3 \cdot 49$	1.57	$3 \cdot 34$	$60 \cdot 00$	$6 \cdot 376$	-		
$15 \cdot 00$	3.306	$3 \cdot 45$	1.79	$3 \cdot 29$	$65 \cdot 00$	$6 \cdot 600$	1.036	$4 \cdot 79$	$0 \cdot 814$
$20 \cdot 00$	$3 \cdot 437$	$3 \cdot 44$	$2 \cdot 02$	$3 \cdot 27$	$70 \cdot 00$	6.787	1.040	$5 \cdot 23$	0.808
$25 \cdot 00$	$3 \cdot 553$	$3 \cdot 45$	$2 \cdot 25$	$3 \cdot 27$	$75 \cdot 00$	6.939	1.097	$5 \cdot 65$	$0 \cdot 844$
$30 \cdot 00$	$3 \cdot 721$	$3 \cdot 45$	$2 \cdot 48$	$3 \cdot 26$	$80 \cdot 00$	7-108	$1 \cdot 109$	$6 \cdot 04$	$0 \cdot 83$
$35 \cdot 00$	$3 \cdot 890$	$3 \cdot 41$	$2 \cdot 65$	$3 \cdot 21$	$85 \cdot 00$	$7 \cdot 301$	$1 \cdot 094$	6.41	$0 \cdot 828$
40.00	$4 \cdot 129$	$3 \cdot 26$	$2 \cdot 91$	(3.07)	$90 \cdot 00$	$7 \cdot 482$	-		

2-Methylcyclohexane-1: 1-diacetic Acid $(\mathrm{M}=\mathbf{2 1 4} \cdot \mathbf{2 5})$.
Potentiometric titration of $100 \cdot 00$ c.c. of $0 \cdot 005 \mathrm{M}$-acid against $0 \cdot 009915 \mathrm{M}$-sodium hydroxide solution.

0.00	$2 \cdot 970$	-	-	-	50.00	5.176	-	-	-
$10 \cdot 00$	3-208	$3 \cdot 11$	1.52	$2 \cdot 98$	60.00	$6 \cdot 183$	-		
$15 \cdot 00$	$3 \cdot 338$	$3 \cdot 10$	1.76	$2 \cdot 96$	$65 \cdot 00$	$6 \cdot 415$	$1 \cdot 60$	$4 \cdot 79$	$1 \cdot 26$
$20 \cdot 00$	$3 \cdot 467$	$3 \cdot 13$	$1 \cdot 99$	$2 \cdot 98$	$70 \cdot 00$	$6 \cdot 596$	$1 \cdot 64$	$5 \cdot 24$	$1 \cdot 28$
25.00	$3 \cdot 606$	3-13	$2 \cdot 23$	$2 \cdot 96$	$75 \cdot 00$	6.761	$1 \cdot 68$	$5 \cdot 65$	$1 \cdot 29$
$30 \cdot 00$	$3 \cdot 758$	$3 \cdot 12$	$2 \cdot 47$	$2 \cdot 95$	$80 \cdot 00$	6.926	1.72	$6 \cdot 06$	$1 \cdot 31$
$35 \cdot 00$	$3 \cdot 927$	3-14	$2 \cdot 69$	$2 \cdot 96$	85.00	$7 \cdot 093$	$1 \cdot 81$	$6 \cdot 40$	$1 \cdot 36$
$40 \cdot 00$	4-134				$90 \cdot 00$	$7 \cdot 288$	1.95	$6 \cdot 76$	(1.46)
Mean 2.96							Mean 1-30		

3-Methylcyclohexane-1:1-diacetic Acid ($\mathrm{M}=214 \cdot 25$).
Potentiometric titration of $100 \cdot 00$ c.c. of $0 \cdot 005 \mathrm{M}$-acid against 0.009850 M -sodium hydroxide solution.

Potentiometric titration of 100.00 c.c. of 0.005 M -acid against 0.009850 M -sodium hydroxide solution.

0.00	2.941	-	-	-	50.00	4.937	-	-	-
$10 \cdot 00$	$3 \cdot 184$	$3 \cdot 38$	$1 \cdot 55$	$3 \cdot 23$	$60 \cdot 00$	6.257	$1 \cdot 23$	$4 \cdot 20$	(0.983)
$15 \cdot 00$	$3 \cdot 213$	$3 \cdot 34$	$1 \cdot 77$	$3 \cdot 19$	$65 \cdot 00$	6.584	$1 \cdot 11$	$4 \cdot 73$	$0 \cdot 801$
$20 \cdot 00$	$3 \cdot 438$	$3 \cdot 38$	$2 \cdot 01$	$3 \cdot 21$	$70 \cdot 00$	$6 \cdot 772$	$1 \cdot 04$	$5 \cdot 23$	$0 \cdot 805$
$25 \cdot 00$	$3 \cdot 577$	$3 \cdot 36$	$2 \cdot 24$	$3 \cdot 18$	$75 \cdot 00$	6.946	$1 \cdot 04$	$5 \cdot 59$	0.799
$30 \cdot 00$	3.715	$3 \cdot 45$	$2 \cdot 47$	$3 \cdot 26$	$80 \cdot 00$	$7 \cdot 113$	1.05	$5 \cdot 98$	$0 \cdot 800$
$35 \cdot 00$	3•884	$3 \cdot 44$	$2 \cdot 68$	$3 \cdot 24$	$85 \cdot 00$	$7 \cdot 291$	$1 \cdot 06$	$6 \cdot 35$	$0 \cdot 804$
$40 \cdot 00$	4.078	$3 \cdot 60$	$2 \cdot 90$	(3.39)	$90 \cdot 00$	$7 \cdot 492$			
Mean 3.23							Mean 0.802		

Summary.

(1) The thermodynamic primary and secondary dissociation constants of cyclopentane-, 3 -methylcyclopentane-, cyclohexane-, 2 -methylcyclohexane-, 3 -methylcyclohexane- and 4 -methylcyclohexane-1 : 1-diacetic acids have been determined by potentiometric titration with the quinhydrone electrode at 25°.
(2) The intercarboxylic distances have been evaluated by the methods of Bjerrum and of Gane and Ingold. The results support the view that the cyclopentane and cyclohexane rings in these compounds are all strainless.

The authors' thanks are due to Mr. R. J. Tudor, M.Sc., A.I.C., for assistance in the preparation of the acids, and to the Royal Society and Imperial Chemical Industries for grants.

Woolwich Polytechnic, London, S.E. 18.
「Received, June 11th, 1937.]

[^0]: * The paper entitled "A New Series of Buffer Mixtures Covering the $p_{\text {H }}$ Range 1 to 6 " (Analyst, 1937, 62, 271) is regarded as Part XVII.
 \dagger Oommen, Ph.D. Thesis, London, 1929.

